Monatshefte für Chemie Chemical Monthly

© Springer-Verlag 1996 Printed in Austria

Aromatische Spirane, 21. Mitt [1]: Darstellung von Methylphthalaldehydsäuren und ihren Ethylund Methylestern als Synthone für Synthesen von methylierten 2,2'-Spirobiindandionen

H. K. Neudeck

Institut für Organische Chemie der Universität Wien, A-1090 Wien, Österreich

Aromatic Spiranes XXI [1]: Syntheses of Methyl Substituted Phthalaldehydic Acids and their Ethyl and Methyl Esters as Synthones for Syntheses of Methylated 2,2'-Spirobiindandiones

Summary. The isomeric methyl phthalaldehydic acids 11 were obtained from phthalides 4 by bromation (*NBS*) to the 3-bromo derivatives 7 and subsequent hydrolysis with water. 4 in turn were accessible from dimethyl methyl benzoates 1 by dibromination with *NBS* and subsequent thermical cyclization to the bromo derivatives 3 which, on catalytic dehalogenation, afforded the phthalides 4. Reaction of 11 with methanol or ethanol gave the pseudo-esters 13 and 14, resp. Short treatment of 11 with diazomethane on the other hand yielded the methyl formyl benzoates 15b to 15e. Prolonged reaction (several hours) gave the oxiranyl compounds 17; in addition, the acetonyl derivatives 18 were also found, obviously formed by a double methylene insertion into 15. All reactions proceeded with good to excellent yields.

Keywords. Methyl phthalides; Phthalaldehydic acids; Formyl methylbenzoates and pseudoesters; Oxiranes; CH₂-Insertion; ¹H NMR; ¹³C NMR; Mass spectra.

Einleitung

Wie schon in der 20. Mitt. dieser Reihe [1] ausgeführt, werden für die Darstellung von di- bis tetramethylierten 2,2'-Spirobiindan-1,1'-dionen mehrere wesentliche Schlüsselprodukte benötigt. Durch Aldolreaktion zwischen entsprechend substituierten Indan-1-onen und methylierten Phthalaldehydsäuren lassen sich die Benzylidenderivate in nahezu quantitativen Ausbeuten darstellen. Diese können nach katalytischer Hydrierung der C-C Doppelbindungen zu den gesättigten Carbonsäuren in guten bis sehr guten Ausbeuten thermisch zu di-und trisubstituierten 2,2'-Spirobiindan-1,1'-dionen zyklisiert werden [2]. Da es sich in den meisten Fällen nicht vermeiden läßt, daß bei der Hydrierung auch die Carbonylgruppe teilweise zum Alkohol oder sogar zu Methylen reduziert wird, ist es von Vorteil, die Benzylidencarbonsäuren durch Erhitzen in diversen Lösungsmitteln (auch unter Beifügung von p-Toluolsulfonsäure) zu den entsprechenden Phthaliden zu zyklisieren. Letztere können durch Behandeln mit Zink in Eisessig zu den gesättigten Carbonsäuren geöffnet werden. Diese Verbindungen fallen zwar als Hauptprodukte an, aber gleichzeitig bilden sich je nach Substrat bereits die gewünschten Spiroverbindungen in mehr oder weniger großem Ausmaß. Erhitzen dieser Produktmischungen führt wiederum zu den Spiroverbindungen. Der Einfachheit der Reaktionen und besonders der höheren Ausbeuten wegen muß letzterer Synthesemethode der Vorzug gegeben werden (siehe Schema 1).

Als Ausgangsmaterial für die Darstellung methylierter Phthalaldehydsäuren bieten sich vorzugsweise die Methylphthalide 4 an, die sich nach radikalischer Bromierung mit N-Bromsuccinimid zu 7 durch nukleophile Substitution mit Wasser leicht in erstere umwandeln lassen [3–5]. Die Phthalide selbst kann man aus entsprechend substituierten Methylbenzoesäuren bzw. ihren Methylestern nach Bromierung mit *NBS* durch Kochen in wässrigen Basen [3, 6] oder durch direktes Erhitzen [4] darstellen. Auch Säurechloride lassen sich nach erfolgter Photobromierung durch Erhitzen in wässriger Natriumbicarbonatlösung zu 4- bzw. 7-Methylphthalid (Ausb.: 21 bzw. 40%) zyklisieren [7].

Neben 3-Methylbenzaldehyd und -benzylalkohol konnte auch die Bildung von 7-Methylphthalid (Ausb.: 33%) bei der Ag(I)/Cu(II)-katalysierten Persulfatoxidation von 2,6-Dimethylbenzoesäure nachgewiesen werden [8]. Noch einfacher sollten sich die angestrebten Phthalide aus Phthalsäureanhydriden

durch Reduktion mit Zn/HCl [5] oder NaBH₄ [7] bzw. LiAlH₄ [5] darstellen lassen. Aufgrund des Mangels an Regioselektivität – es entsteht z.B. aus 3-Methylphthalsäureanhydrid ein 1:1-Gemisch der beiden Phthalide – scheidet dieses Verfahren aus.

Bei Verwendung von 2-Selectrid konnte aber das Isomerenverhältnis mit 85% weit zugunsten des 7-Methylphthalids verschoben werden [9]. Im Gegensatz zum 3-Methylphthalsäureanhydrid bildete sich aus dem entsprechenden Phthalimid beim Behandeln mit Zink/Kupfersulfat im Alkalischen das

4-Methylphthalid zu 91% neben 9% des 7-Methylisomeren bei einer Gesamtausbeute von 45% [5]. Auch bei der katalytischen Hydrierung von 3-Methylphthalsäureanhydrid mit Pd/C entstand bevorzugt das 4-Methylisomere zu 69% neben 13% des 7-Methylanalogen. Allerdings konnte aus dem isomeren 4-Methylphthalsäureanhydrid nach dieser Methode überhaupt kein Isobenzofuranon, sondern nur die entsprechende Dimethylbenzoesäure erhalten werden [10].

Weitere Darstellungsmöglichkeiten für Phthalide gehen von *o*-halogenierten Benzylalkoholen aus. Nach *Mori* [11] und auch nach *Stille* [12] lassen sich diese durch Pd/C-katalysierte Carbonylierung in erstere überführen. Auch die Katalyse mit Alkylcobaltcarbonylkomplexen liefert die Phthalide in recht guten Ausbeuten [13]. Trotzdem dürfte die Synthese größerer Mengen substituierter Phthalide in manchen Fällen an der schweren Zugänglichkeit dieser *o*-halogenierten Benzylalkohole scheitern.

Weitaus einfacher ist es, von methylierten Benzylalkoholen auszugehen. Diese lassen sich nach regiospezifischer *ortho*-Lithionierung [14, 15] bzw. Thallierung [16] durch nachfolgende Behandlung mit CO_2 bzw. CO zu den Phthaliden cyclisieren.

So konnte, ausgehend von *p*-Methylbenzylalkohol, das 6-Methylphthalid mit einer Gesamtausbeute von 23% [16] synthetisiert werden. Auch *tert.*-Benzamide [17], aber besser noch *tert.*- β - Aminobenzamide [18], lassen sich direkt ortholithionieren. Aus letzteren Substraten können nach Umsetzung mit Aldehyden bzw. Dimethylformamid und anschließender saurer Hydrolyse 3-substituierte Phthalide bzw. bereits die angestrebte Phthalaldehydsäure erhalten werden. Im Gegensatz dazu reagieren *o*-lithionierte *tert.*-Benzamide erst nach Transmetallierung zur *Grignard*-Verbindung mit Carbonylverbindungen. Durch photochemische Reaktion von Benzoesäureestern, die durch Imidazolidinonen substituiert sind, in Methanol bilden sich bereits die 3-Methoxyphthalide [19] in bescheidenem Ausmaß.

Phthalide lassen sich auch durch Ringaufbau über eine 4 + 2-Cycloaddition aufbauen, bei der konjugierte Diene mit Methyl-2-((2-nitrophenyl)-sulfinyl)-2,3butadienoat umgesetzt werden [20]. Auch 2-Pyron-6-carboxylate, die im Esteranteil entsprechende Dienophile aufweisen, cyclisieren nach einer dienregenerierenden *Diels-Alder*-Reaktion zu Dihydrophthaliden, die sich durch Dehydrierung mit Pd/C leicht aromatisieren lassen [21].

Allen diesen letzteren Darstellungsmöglichkeiten ist gemeinsam, daß sie nur bei bestimmten Substraten die gewünschten Phthalide liefern oder daß das Edukt relativ schwer zugänglich ist. Wahrscheinlich können auch nicht sämtliche Methylphthalide nach der gleichen Methode auf synthetisch einfachem und ergiebigem Weg dargestellt werden.

Ergebnisse und Diskussion

Darstellung der Phthalaldehydsäuren (3-Hydroxy-3-H-isobenzofuran-1-one, 11, Schema 2)

Die Dimethylbenzoesäuremethylester 1 [1] wurden vorzugsweise mit zwei Äquivalenten NBS unter Zusatz von Dibenzoylperoxid in CCl_4 erhitzt. Manchmal mußte die Reaktion durch Bestrahlen mit einer Photolampe durchgeführt werden, vor allem dann, wenn der Ausgangsester durch eine *Sandmeyer*-Reaktion aus dem entsprechenden Anilin dargestellt wurde, da Spuren nicht entfernter oder entfern-

barer Phenole die Radikalreaktion verhinderten. Da in den meisten Fällen die Dibrommethylverbindungen 2 nicht kristallin anfielen, wurde das Rohprodukt thermisch zu den Brommethylphthaliden 3 cyclisiert. Diese konnten z.T. in kristalliner Form erhalten werden (Ausb. für 3b 47%, für 3c 61% und für 3d 33%). Diese Kristallisate, aber auch die Mutterlaugen, wurden getrennt in Dioxan (Essigester als Lösungsmittel führte zu Aufarbeitungsschwierigkeiten) mit Pd/C unter Beifügung von Ca(OH)₂ in einer *Parr*-Apparatur zu den Phthaliden 4 hydriert. Die Gesamtausbeuten, ausgehend von den entsprechenden Methylestern 1, betrugen für 4a 71%, für 4b, für 4c 66% und für 4d 69 bis 70% bei Verwendung von 2 bzw. 1.5 Äquivalenten *NBS*. Bei Umsatz mit 1.1 Äquivalenten konnte nach thermischer Cyclisierung 4d nur zu 50% erhalten werden. Wurde bei diesem Ansatz der Ringschluß mit NaOH [3] durchgeführt, so sank die Ausbeute auf 46%. Daneben bildete sich Verbindung 5 (charakterisiert als Methylester 6) zu ca. 10%.

Die erhaltenen Phthalide 4 wurden wiederum mit einem Äquivalent *NBS* umgesetzt. Erwartungsgemäß bildeten sich die 3-Bromphthalide 7 als Hauptprodukte. Daneben konnten nach Analyse der Rohprodukte mittels ¹H-NMR-Spektroskopie Ausgangsmaterial 4, die Brommethylphthalide 9 und allenfalls die Dibromverbindungen 8 nachgewiesen werden. Diese Produktgemische wurden mit Wasser unter Rückfluß erhitzt. Neben den angestrebten Phthalaldehydsäuren 11 (Ausb. für a, b, c und d 51, 61, 49 und 48%) konnten noch z.T. die dimeren Produkte 12 und auch die Formylverbindung 10 zu wenigen Prozenten isoliert werden. Kristallisation der Phthalaldehydsäuren 11 aus CHCl₃ ist nicht empfehlenswert; falls es nicht absolut ethanolfrei ist, bilden sich z.T. die Ethoxyverbindungen 14.

Darstellung der 2-Formylbenzoesäuremethylester bzw. -pseudoester (14 und 13, Schema 3)

Schema 3

Nahezu quantitativer Umsatz zu diesen Pseudoestern 14 bzw. 13 läßt sich durch Erhitzen der isolierten Phthalaldehydsäuren 11 mit Ethanol bzw. Methanol- vorzugsweise unter Zusatz von *p*-Toluolsulfonsäure-erreichen. Durch Analyse der ¹H-NMR-Spektren konnte die zusätzliche Bildung (wenige Prozente) der offenkettigen Ester 16 bzw. 15 nachgewiesen werden. Überraschenderweise ließ sich der Pseudoester 13e in Analogie zur Darstellung von 13a bis d nicht ohne nennenswerte (27%) Beimengungen der offenkettigen Form 15e darstellen.

Diese offenkettigen Methylester sollten sich leicht aus den Phthalaldehydsäuren 11 durch kurzfristiges Umsetzten mit CH_2N_2 darstellen lassen. Bei längerfristigem Einwirken (mehrere Stunden) von verdünnter CH_2N_2 -Lösung auf die Phthalaldehydsäuren 11 ergaben sich aber überraschende Befunde. Aus 11d entstand selbst nach 5 h Reaktionszeit nahezu reiner offenkettiger Formylester 15d, bei dreifacher Reaktionszeit wurden aber zusätzlich 20% der Epoxidverbindung 17d gebildet. Dagegen wurde aus dem isomeren 11a nahezu quantitativ der Pseudoester 13a erhalten. Die Phthalaldehydsäuren 11c und 11b dagegen reagieren mit Diazomethan in anderer Weise. In der rascher wanderden Fraktion (anteilig zu 71 bzw. 74%) wurden zwar die offenkettigen Methylester 14c bzw. 14b als Hauptprodukte nachgewiesen, aber zugleich die Oxiranverbindungen 17c bzw. 17b (jeweils zu *ca.* 30%). In beiden Fällen konnte in den langsamer wandernden Fraktionen keine cyclische Verbindung 13 nachgewiesen werden.

Bei Einwirken von konzentrierterer CH_2N_2 -Lösung waren nach 6-stündiger Reaktionszeit als alleinige Verbindungen in der durch Schichtchromatographie isolierten vorderen Fraktion nur mehr die Epoxide **17c** bzw. **17b** (Ausb. 40 bzw. 17%) enthalten. In den hinteren Fraktionen (anteilig zu 30 bzw. 27%) befanden sich neben einer weiteren nicht rein isolierbaren und daher nicht genau identifizierbaren Verbindung (vermutlich der entsprechende 2-Acetylbenzoesäuremethylester) die Propanonderivate **18c** bzw. **18b** zu ca. 65%, welche nach Mehrfachentwicklung und Zonenschneiden als Reinsubstanzen isoliert werden konnten.

Eine ¹H-NMR-Analyse nach ca. 5–10 minütiger Reaktionszeit von 11b und auch 11c mit konzentrierterer Diazomethanlösung ließ bereits ein Reaktionsgemisch erkennen, in dem sich durch Spektrenvergleich der Aldehydester 15b (15%), die Oxiranverbindung 17b (36%) und ein weiterer nicht identifizierter Aldehyd (10%) bzw. 15c zu 40%, 17c zu 23% und ein weiterer Aldehyd zu 10% nachweisen ließen. In dieser konzentrierten CH₂N₂-Lösung bildete sich auch aus 11d nicht spezifisch der offenkettige Formylmethylester 15d. Bereits nach nur 5 Minuten ließ das ¹H-NMR-Spektrum folgende Zusammensetzung erkennen: 49% 15d neben 20% 13d, 14% 17d und einem weiteren Aldehyd zu ~4%. Die nach 5-stündiger Reaktionszeit isolierte vordere Fraktion (anteilig zu 38%) enthielt 13d zu 43% und 17d zu 27%, aber keinen Aldehydester 15d. Folglich müssen sich die Oxiranverbindungen 17 aus den Formylestern 15 bilden, d.h. die in Lit. [4] vermutete Insertion von CH2 in den Lactonring ist nicht richtig, zumal 3-stündiges Einwirken von CH_2N_2 auf die reinen Methoxyverbindungen 13 diese unverändert ließ. Aus der hinteren Fraktion (anteilig zu 26%) wurde nach Mehrfachentwicklung die Acetonylverbindung 18d isoliert.

Bei dieser hohen Konzentration an CH_2N_2 entstand bereits nach 5 Minuten Reaktionszeit aus **11a** die cyclische Methoxyverbindung **13a** nur mehr zu 33%. Daneben wurden 41% **15a**, 9% **17a** und ein weiterer Aldehyd zu 2% gebildet. Nach 5-stündiger Reaktionszeit konnte keine Formylverbindung **15a** mehr nachgewiesen werden. Aus der unsubstituierten Phthalaldehydsäure (**11e**) wurde nach 5-minütiger Reaktionszeit der entsprechende Formylbenzoesäuremethylester (**15e**) in nahezu reiner Form erhalten, wogegen nach 2-stündiger Reaktion dieser bereits zu 40% in die Oxiranylverbindung **17e** umgewandelt worden war. Diese konnte nach 10 Stunden Reaktionszeit durch Schichtchromatographie (vordere Zone) als Reinsubstanz zu 34% isoliert werden. Aus der langsamer wandernden Fraktion (zu 30% enthalten) ließ sich **18e** mit 15% iger Ausbeute isolieren.

Bei den in den Rohspektren nachgewiesenen Aldehyden dürfte es sich demnach um die durch CH_2 -Einschub zwischen Aromat und Formylgruppe entstandenen 2-(2-Oxoethyl)-benzoesäuremethylester handeln, aus denen sich nach weiterer CH_2 -Insertion offensichtlich die Acetonylderivate **18** bilden.

Experimentelles

Schmelzpunkte (unkorrigiert): Kofler-Heiztischmikroskop mit Thermometerablesung. ¹H-NMR: Bruker WM-250 (250 MHz) bzw. Bruker AM 400 WB (400 MHz), CDCl₃, *TMS* als interner Standard (wenn nicht anders angegeben). Für die Zuordnung der einzelnen Protonen siehe Formelschemata (entspricht nicht unbedingt der offiziellen Nomenklatur). ¹³C-NMR: Bruker AM 400 WB (100 MHz), CDCl₃, 303 °K, JMOD; Zuordnung siehe Formelschemata MS: Varian MAT-CH7. IR: Perkin Elmer 1740, Film auf Silikon. Elementaranalysen: Perkin Elmer 2400. Säulenchromatographie: bei 2.4 bar (30 ml/min) an Kieselgel 60 (Merck) bzw. Merck Lichroprep, Korngröße 40–63 bzw. 25–40 µm. Präp. Schichtchromatographie: Kieselgel HF₂₅₄ (Merck), 0.75 mm. Dünnschichtchromatographie: DC-Folien Kieselgel 60F₂₅₄ (Merck).

Methylphthalaldehydsäuren (11; Schema 2)

2,3-Dibrommethylbenzoesauremethylester (**2a**; $C_{10}H_{10}Bv_2O_2$, 322.0) 96.1 g (0.586 mol) Dimethylbenzoesäureester **1a** [1] und 208.6 g (1.172 mol) NBS wurden in 1.21 abs. CCl₄ unter Rückfluß erhitzt. Kurz vor Siedebeginn wurden 2 Spatelspitzen Dibenzoylperoxid zugegeben. Nach 5 h war die Umsetzung beendet (kein Bodensatz von NBS mehr sichtbar). Vorsichtshalber wurde noch 2 h weitererhitzt. (Anm.: bei manchen Umsetzungen der Ester, die durch Sandmeyer-Reaktion aus den entsprechenden Anilinen dargestellt wurden, verhinderten anwesende Spuren von Phenolen die Reaktion mit Radikalstartern, sodaß mehrstündiges Bestrahlen der gerührten und erhitzten Mischung mit einer 1000 W Photolampe notwendig war). Nach dem Abkühlen wurde vom Succinimid filtriert, mit etwas CCl₄ nachgewaschen und das Lösungsmittel im Vakuum entfernt. Das ¹H-NMR des Rohprodukts zeigte, daß 10% Verunreinigungen enthalten waren. ¹H-NMR (400 MHz): $\delta = 3.95$ (s; OCH₃), 4.69 (s; 3-CH₂), 5.13 (s; 2-CH₂), 7.37 (t; J = 8 Hz, 5-H), 7.54 (d; J = 8 Hz, 4-H), 7.90 (d; J = 8 Hz, 6-Hz) ppm.

4-Brommethylphthalid (3a; C9H7BrO2, 227.1)

Da das als gelbes Öl vorliegende **2a** (188.2 g, 99.7%) weder durch Behandeln mit Petrolether noch mit Benzol zur Kristallisation gebracht werden konnte, wurde dieses 1 h auf 180 °C erhitzt und anschließend ebenso lange bei dieser Temperatur bei 10 torr gehalten. Die Reinigung des braunen Rückstandes (**3a** enthaltend) erfolgte durch Kugelrohrdestillation. Sdp.: ~ 120–130 °C/0.005 torr; Ausb.: 106.2 g (80%). Die Substanz konnte weder mit CH₂Cl₂ noch mit Benzol/Petrolether zur Kristallisation gebracht werden, obwohl das ¹H-NMR keine wesentlichen Verunreinigungen zeigte. ¹H-NMR (400 MHz): δ = 4.51 (s; CH₂), 5.41 (s; 3-H), 7.54 (t; *J* = 8 Hz, 6-H), 7.65 (d; *J* = 8 Hz, 5-H), 7.89 (d; *J* = 8 Hz, 7-H) ppm.

4-Methylphthalid (4a; C₉H₈O₂, 148.2)

Obiges Rohprodukt wurde in zwei Portionen jeweils in 300 ml Dioxan als Lösungsmittel (Essigester führte zu einem festen, sehr harten Bodensatz) mit 15 g Ca(OH)₂ und 10 g Pd/C (10%ig) in der *Parr*-Apparatur 2 Tage bei einem H₂-Druck von *ca.* 40 Psi geschüttelt. Vom Katalysator wurde filtriert, das Dioxan im Vakuum entfernt und das Filtergut mehrmals mit CH₂Cl₂ nachgewaschen. Die organische Phase wurde mit 10%iger HCl, gesättigter NaCl-, 10%iger NaHCO₃- und wieder mit NaCl-Lösung extrahiert. Nach dem Trocknen über MgSO₄ wurde das Phthalid **4a** durch Kugelrohrdestillation gereinigt. Sdp.: ~ 80 °C/0.005 torr (Sublimation); Ausb.: 61.2 g (70.6% auf Ausgangsester **1a** bezogen); Schmp.: 70 °C (aus Petrolether; Lit. [7]: 68–69.5 °C; Lit. [5]: 66.5–68.5 °C); Ausb.: 55 g (63.4%). ¹H-NMR (250 MHz): $\delta = 2.37$ (s; CH₃), 5.26 (s; 3-H), 7.45 (mc; 5-H, 6-H), 7.75 (dd; J = 6/3 Hz, 7-H) ppm; ¹³C-NMR: $\delta = 17.31$ (q; CH₃), 68.99 (t; C-3), 122.94 (d; C-7), 125.31 (s; C-7), 129.17 (d; C-6), 132.22 (s; C-4), 134.61 (d; C-5), 145.42 (s; C-3'), 171.40 (s; C-1) ppm; MS (70eV): *m/z* (%) = 148 [M] (78.8), 133 [M-CH₃] (3.3), 119 [M-CHO] (100), 91 (93.8).

2,4-Dibrommethylbenzoesäuremethylester (**2b**; $C_{10}H_{10}Br_2O_2$, 322.0)

Darstellung aus 164 g (1 mol) **1b** [1] analog zur Reaktion zu **2a** mit Radikalstarter, Reaktionszeit 3 h. Rohausb.: 322 g (100%) **2b**; Schmp.: 80-81 °C (aus Benzol/*PE*; Lit. [22]: 83-84 °C); ¹H-NMR (400 MHz): $\delta = 3.95$ (s; OCH₃), 4.47 (s; 4-CH₂), 4.94 (s; 2-CH₂), 7.40 (d; J = 8 Hz, 5-H), 7.49 (s; 3-H), 7.95 (d; J = 8 Hz, 6-H) ppm.

Bei sonst gleichen Reaktionsbedingungen, aber unter Verwendung von nur 1 Äquivalent NBS wurde die Zusammensetzung des Bromierungsproduktes mittels ¹H-NMR bestimmt. Lediglich 4% dibromiertes Produkt **2b** waren neben 16% Ausgangsmaterial **1b** enthalten. Die Hauptmenge bildeten die monobromierten Verbindungen 2-Brommethyl-4-methylbenzoesäuremethylester und 4-Brommethyl-2-methylbenzoesäuremethylester im Verhältnis 44:56. Auf Grund dieser Zusammensetzung wurde die Folgereaktion nicht durchgeführt.

5-Brommethylphthalid (3b; C₉H₇BrO₂, 227.1)

Das erhaltene Rohprodukt wurde thermisch cyclisiert (siehe Darstellung von **3a**). Sdp.: ~110–120 °C/0.005 torr; Ausb.: 205.66 g (90.6%). Das Kugelrohrdestillat wurde aus 300 ml CH₂Cl₂ kristallisiert; Schmp.: 163–164 °C (Lit. [4]: 162–164 °C; Lit. [22]: 159 °C; Ausb.: 107.1 g (47.2%); ¹H-NMR (400 MHz): $\delta = 4.55$ (s; CH₂), 5.32 (s; 3-H), 7.53 (s; 4-H), 7.56 (d; J = 8 Hz, 6-H), 7.90 (d; J = 8 Hz, 7-H) ppm; MS (70eV): m/z (%) = 228 und 226 [M⁺] (6.1 und 6.3), 147 [M-Br] (100), 118 (22.3), 90 (17.7).

5-Methylphthalid (4b; C₉H₈O₂, 148.2)

Kristallines **3b** (106 g, 0.467 mol) wurde in 2 Portionen hydriert (siehe Darstellung von **4a**); Sdp.: ~80–100 °C/0.001 torr; Ausb.: 62.66 g (90.7%); Schmp.: 120–121 °C (aus *PE*/Benzol; Lit. [22]: 117–118 °C; Lit. [4]: 121–122 °C; Lit. [20]: 119–120 °C; Lit. [21]: 116–117 °C); Ausb.: 57.4 g (83%). Auch aus der Mutterlauge von **3b** (98.56 g) konnten weitere 39.2 g reines **4b** erhalten werden. Somit ließ sich **4b** aus **1b** mit einer Gesamtausbeute von 65.7% darstellen. ¹H-NMR (400 MHz): $\delta = 2.48$ (s; CH₃), 5.26 (s; 3-H), 7.27 (s; 4-H), 7.32 (d; *J* = 7.9 Hz, 6-H), 7.78 (d; *J* = 7.9 Hz, 7-H) ppm; ¹³C-NMR: $\delta = 21.94$ (q; CH₃), 69.33 (t; C-3), 122.32 (d; C-6), 123.08 (s; C-7'), 125.34 (d; C-4), 130.11 (d; C-7), 145.18 (s; C-5), 147.05 (s; C-3'), 171.06 (s; C-1) ppm; MS (70eV): m/z (%) = 148 [M] (57.8), 133 (2.6), 119 (100), 91 (74.7).

2,5-Dibrommethylbenzoesäuremethylester (2c; $C_{10}H_{10}Br_2O_2$, 322.0)

Aus 1c [1] analog zur Darstellung von 2a. Reaktionszeit: 5 h mit Radikalstarter bzw. 2 h unter Belichten. Ausb.: ca. 99%; Schmp. 75–77 °C (aus Benzol/PE); ¹H-NMR (250 MHz): $\delta = 3.95$ (s;

OCH₃),4.48 (s; 5-CH₂), 4.95 (s; 2-CH₂), 7.45 (d; J = 8 Hz, 3-H), 7.53 (d; J = 8 Hz, 4-H), 8.00 (s; 6-H) ppm.

6-Brommethylphthalid (3c; C₉H₇BrO₂, 227.1)

Aus 23.53 g (73 mmol) kristallinem **2c** analog zur Darstellung von **3a**. Sdp.: ~ 120–130 °C/0.001 torr; Ausb.: 16.21 g (97.7%); Schmp.: 152–153 °C (aus CH₂Cl₂); Ausb.: 10.11 g (61%); Schmp.: 160–162 °C (nach nochmaliger Kristallisation aus *PE*/Benzol); ¹H-NMR: (250MHz) δ = 4.57 (s; CH₂), 5.33 (s; 3-H), 7.50 (d; *J* = 8 Hz, 4-H), 7.73 (d; *J* = 8 Hz, 5-H), 7.93 (s; 7-H) ppm; MS (70eV): *m/z* (%) = 228 und 226 [M⁺] (4.3 und 4.2), 147 (100), 119 (45.9), 90 (26.2).

Auch aus dem Rohprodukt 2c (330.56 g, 1.026 mol) konnten nach Destillation (215.6 g, 92.5%) und Kristallisieren aus CH₂Cl₂ 109.6 g (47%) kristallines Brommethylphthalid 3c erhalten werden.

6-Methylphthalid (4c; C₉H₈O₂, 148.2)

Dargestellt durch Hydrierung von 108.3 g (0.477 mol) kristallinem **3c** analog zur Synthese von **4a**. Ausbeute nach Kugelrohrdestillation bei ~70 °C/0.04 torr (Subl.): 68.13 g (96.5%); Schmp.: 89–90 °C (aus *PE*/Benzol; Lit. [16]: 88 °C; Lit. [6]: 85 °C); Ausb.: 64.8 g (91.8%); ¹H-NMR (250 MHz): $\delta = 2.44$ (s; CH₃), 5.25 (s; 3-H), 7.34 (d; *J* = 7.9 Hz, 4-H), 7.47 (d; *J* = 7.9 Hz, 5-H), 7.68 (s; 7-H) ppm; ¹³C-NMR: $\delta = 21.17$ (q; CH₃), 69.53 (t; C-3), 121.73 (d; C-4), 125.61 (d; C-7), 125.83 (s; C-7), 135.13 (d; C-5), 139.19 (s; C-6), 143.83 (s; C-3'), 171.19 (s; C-1) ppm; MS (70eV): *m/z* (%) = 148 [M] (89.0), 133 (3.0), 119 (100), 91 (88.6).

Ausgehend von 1c konnte auch ohne Isolierung der Zwischenstufen als Kristallisate 4c in einer Gesamtausbeute von 65.5% erhalten werden.

7-Brommethylphthalid (3d; C₉H₇BrO₂, 227.1)

Aus 164 g (1 mol) Methylester 1d [1] und 356 g (2 mol) *NBS* entsteht durch 6-stündiges Bestrahlen in 1500 ml siedendem CCl₄ das Rohprodukt 2d (275 g). Dieses wurde analog zur Darstellung von 3a thermisch cyclisiert und bei *ca*. 110 °C/0.005 torr im Kugelrohr destilliert; Ausb.: 188.8 g (83.2%). Nach Kristallisation aus *ca*. 200 ml CH₂Cl₂ wurden 53.3 g (23.8%) und durch Konzentration der Mutterlauge weitere 20.7 g (9.1%) 3d mit einem Schmp. von 133–137 °C erhalten. Schmp.: 137–138 °C (nach weiterer Kristallisation aus *PE*/Benzol; Lit. [23]: 140 °C); ¹H-NMR (400 MHz): $\delta = 5.01$ (s; CH₂), 5.30 (s; 3-H), 7.44 (d; J = 8 Hz, 4-H), 7.56 (d; J = 8 Hz, 6-H), 7.67 (t; J = 8 Hz, 5-H); MS (70eV): m/z (%) = 228 und 226 [M⁺] (14.5 und 14.0), 147 (100), 118 (26.8), 91 (31.7).

7-Methylphthalid (4d; C₉H₈O₂, 148.2)

a) Das kristalline Bromid **3d** und auch die ölige Mutterlauge wurde analog zur Darstellung von **4a** getrennt hydriert. Sdp.: ~75 °C/0.05 torr (Kugelrohr); Gesamtausb.: 108.72 g (73.5%); Schmp.: 87–88 °C (aus *PE*/Benzol); Ausb.: 101.6 g (68,6%); Schmp. nach neuerlicher Kristallisation aus *PE*/Benzol 90–91 °C (Lit. [4, 7]: 85–87 °C; Lit. [5]: 86–87 °C; Lit. [3]: 83–85 °C); ¹H-NMR (250 MHz): δ = 2.69 (s; CH₃), 5.25 (s; 3-H), 7.27 (d; *J* = 8 Hz, 6-H), 7.29 (d; *J* = 8 Hz, 4-H), 7.53 (t; *J* = 8 Hz, 5-H) ppm; ¹³C-NMR: δ = 17.18 (q; CH₃), 68.77 (t; C-3), 119.27 (d; C-4), 123.11 (s; C-7), 130.47 (d; C-6), 133.66 (d; C-5), 139.62 (s; C-7), 146.97 (s; C-3'), 171.17 (s; C-1) ppm; MS (70eV): *m/z* (%) = 148 [M] (90.3), 133 (2.8), 119 (100), 91 (84.4).

b) Auch aus 80 g (0.488 mol) **1d** und nur 130.2 g (0.731 mol) *NBS* konnten auf gleiche Weise 50.7 g (70.2%) kristallines **4d** mit einem Schmp. von 87 °C erhalten werden.

c) Eine Mischung von 47.48 g (0.29 mol) 1d und 56.9 g (0.32 mol) NBS in 800 ml CCl₄ wurden 3 h unter Belichtung am Rückfluß erhitzt. Eine Analyse des Reaktionsproduktes (75.7 g) mittels ¹H-NMR-Spektroskopie zeigte ungefähr folgende Zusammensetzung: 25% Ausgangsmaterial 1d, 65% 2-Brommethyl-6-methylbenzoesäuremethylester und 10% 2d.

39.1 g des obigen Gemisches wurden 1 h auf 180 °C erhitzt und anschließend durch Kugelrohrdestillation (Sdp.: \sim 70–80 °C/0.05 torr) gereinigt. Das Destillat (18.9 g) wurde aus *PE*/Benzol kristallisiert; Ausb.: 11.03 g (49.7%) **4d**.

Der verbliebene Anteil (36.6 g) aus der Bromierungsreaktion c) wurde nach Lit. [3] 35 h in 150 ml 20% iger NaOH und 35 ml CH₃OH unter Rückfluß erhitzt. Nach dem Ansäuern mit conc. HCl wurde nochmals 0.5 h unter Rückfluß erhitzt. Der Etherextrakt wurde mit NaHCO₃- und gesättigter NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Nach Kugelrohrdestillation bis ~ 75 °C/0.05 torr und Kristallisation wurden 9.5 g (45.8%) **4d** erhalten.

2-Methoxymethyl-6-methylbenzoesäure (5; C10H12O3, 180.2)

Der Bicarbonatauszug der letzten Reaktion wurde angesäuert und das Gemisch von 2,6-Dimethylbenzoesäure und **5** durch Extraktion mit Ether isoliert. 2,6-Dimethylbenzoesäure wurde durch Sublimation bei *ca*. 50 °C/0.1 torr im Kugelrohr abgetrennt und **5** bei *ca*. 70 °C/0.1 torr als zähes Öl isoliert. Ausb.: 2.52 g (10%); ¹H-NMR (400 MHz): $\delta = 2.46$ (s; CH₃), 3.39 (s; OCH₃), 4.62 (s; ArCH₂), 7.20 (d; J = 8 Hz, 5-H), 7.23 (d; J = 8 Hz, 3-H), 7.31 (t; J = 8 Hz, 4-H) ppm; MS (70eV): m/z (%) = 180 [M⁺] (17.4), 165 [M-CH₃] (17.6), 163 (M-OH) (24.3), 162 (M-H₂O] (20.8), 148 [M-CH₃OH] (15.6), 147 [M-CH₃-H₂O] (100), 119 (39.2), 91 (51.5).

2-Methoxymethyl-6-methylbenzoesäuremethylester (6; $C_{11}H_{14}O_3$, 194.2)

Darstellung aus **5** durch Umsetzung mit etherischer Diazomethanlösung. Sdp.: ~ 50 °C/0.1 torr (im Kugelrohr); $n_D^{19} = 1.5084$; ¹H-NMR (400 MHz): $\delta = 2.33$ (s; CH₃), 3.31 (s; OCH₃), 3.88 (s; CO₂CH₃), 4.48 (s; ArCH₂), 7.12 (d; J = 8 Hz, 5-H), 7.18 (d; J = 8 Hz, 3-H), 7.26 (t; J = 8 Hz, 4-H) ppm; MS (70eV): m/z (%) = 194 [M⁺] (20.5), 179 [M-CH₃] (20.5), 163 [M-OCH₃] (27.7), 162 [M-CH₃OH] (17.2), 147 [M-CH₃OH-CH₃] (100), 119 (16.3), 91 (30.3).

Phthalaldehydsäuren (11; allgemeine Arbeitsvorschrift am Beispiel von 11a)

54.8 g (0.37 mol) Phthalid **4a** und 67.2 g (0.377 mol) *NBS* wurden in 400 ml CCl₄ (absolut) unter Rühren bis kurz unter den Siedepunkt erwärmt und dann mit 1–2 Spatelspitzen Dibenzoylperoxid versetzt. Nach Abklingen der stark exothermen Reaktion wurde noch eine Stunde unter Rückfluß erhitzt. Nach Abkühlen wurde vom Succinimid filtriert und das Lösungsmittel im Vakuum entfernt. Die ungefähre Zusammensetzung des Rückstandes wurde aus dem ¹H-NMR-Spektrum bestimmt. Durch Kristallisation konnte z.T. das gewünschte 3-Brom-methylphthalid (**7a**) isoliert werden. Die Mutterlauge und die Hauptmenge des Kristallisats wurden mit 400 ml Wasser versetzt und unter Rühren 12 h unter Rückfluß erhitzt. Vom öligen Rückstand wurde dekantiert. Nach Kühlung wurde das Kristallisat isoliert. Der ölige Rückstand wurde mit der wässrigen Mutterlauge nochmals ausgekocht. Dieser Vorgang wurde noch ein- bis zweimal wiederholt. Die vereinigten Kristallisate wurden in verdünnter NaOH aufgenommen und zwecks Entfernung nicht saurer Anteile mit CH₂Cl₂ extrahiert. Die alkalische Phase wurde angesäuert und der Niederschlag vor der weiteren Reinigung durch Kugelrohrdestillation über CaCl₂ getrocknet. Das Destillat sollte keinesfalls aus CHCl₃ kristallisiert werden, falls dieses nicht absolut ethanolfrei ist, da sonst z.T. die Verbindungen **14** entstehen.

Aus dem CH_2Cl_2 -Auszug, meist Ausgangsmaterial **4**, ev. auch Formylphthalid **10** und das dimere Produkt **12** enthaltend, wurde (nach vorangegangener ¹H-NMR-Analyse) letzteres durch Kugelrohrdestillation isoliert.

3-Brom-4-methylphthalid (7a; C₉H₇BrO₂, 227.1)

Zusammensetzung des Bromierungsgemisches von 4a: 80% 7a, 6% 4a, 5% 9a (und 8% 8a?); Schmp.: 88–93 °C (aus Benzol); Sdp.: ~70–80 °C/0.001 torr (in Kugelrohr); Schmp.: 90–92 °C (Lit. [5]:

86–90 °C); ¹H-NMR (400 MHz): $\delta = 2.47$ (s; CH₃), 7.34 (s; 3-H), 7.55 (mc; 5-H, 6-H), 7.78 (mc; 7-H) ppm; MS (70eV): m/z (%) = 227 [M⁺] (1.2), 164 (82.5) 163 (73.3), 147 [M-Br] (87.6), 119 (100), 91 (87.8).

3-Hydroxy-4-methylphthalid (11a; C₉H₈O₃, 164.2)

Sdp.: ~ 80–90 °C/0.001 torr; Ausb.: 34.4 g (56.7% auf eingesetztes **4a** bezogen); Schmp.: 120 °C (aus CH₂Cl₂; Lit. [5]: 117.5–119 °C); Ausb.: 31.07 g (51.2%); ¹H-NMR (400 MHz, CDCl₃): δ = 2.49 (s; CH₃), 4.60 (s breit; -OH), 6.65 (s; 3-H), 7.46 (d; *J* = 8 Hz, 5-H), 7.47 (t; *J* = 8 Hz, 6-H), 7.67 (mc; 7-H) ppm; ¹H-NMR (400 MHz, Aceton-d₆): δ = 2.47 (s; -CH₃), 6.73 (s; 3-H), 6.90 (s breit; -OH), 7.53 (d; *J* = 8 Hz, 5-H), 7.54 (t; *J* = 8 Hz, 6-H), 7.60 (d; *J* = 8 Hz, 7-H) ppm; ¹³C-NMR: δ = 17.16 (q; CH₃), 97.60 (d; C-3), 122.77 (d; C-7), 126.62 (s; C-7'), 130.95 (d; C-6), 134.81 (s; C-4), 135.92 (d; C-5), 144.41 (s; C-3'), 169.63 (s; C-1) ppm; MS (70eV): *m/z* (%) = 164 [M] (22.1), 163 [M-H] (15.7), 147 [M-OH] (6.2), 136 [M-CO] (12.0), 119 [M-CO-OH] (100), 118 [M-CO-H₂O] (4.7), 91 (47.0).

Zusammensetzung der CH_2Cl_2 -Mutterlauge (3.3 g): 56% 11a, 38% 4a und 6% 10a; Zusammensetzung des CH_2Cl_2 -Auszuges (0.623 g): 93% 4a und 7% 10a.

3-Brom-5-methylphthalid (7b; C₉H₇BrO₂, 227.1)

Aus 51.8 g (0.35 mol) **4b** mit 1.02 Äquivalenten *NBS*; Rohausb.: 77.14 g; Zusammensetzung: 64% **7b**, 12% **4b**, 8% **9b** (und 15% **8b**?). Es wurde zweimal aus Benzol/*PE* kristallisiert und dann im Kugelrohr destilliert; Sdp.: ~70-80 °C/0.001 torr; Schmp.: 80-82 °C (Lit. [4]: 79-81 °C); ¹H-NMR (400 MHz): $\delta = 2.51$ (s; CH₃), 7.32 (s; 3-H), 7.39 (s; 4-H und d; J = 6.4 Hz, 6-H), 7.77 (d; J = 8.4 Hz, 2-H) ppm; MS (70eV): m/z (%) = 164 (4.5), 163 (3.3), 147 [M-Br] (100), 119 (53.9), 91 (59.9).

3-Hydroxy-5-methylphthalid (11b; C₉H₈O₃, 164.2)

Sdp.: ~ 80 °C/0.001 torr; Ausb.: 34.884 g (60.8% auf eingesetztes **4b** bezogen); Schmp.: 142–144 °C (aus CH₂Cl₂); Ausb.: 29.2 g (50.9%); ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.51$ (s; CH₃), ~ 4.50 (s sehr breit; -OH), 6.62 (s breit; 3-H), 7.42 (d; J = 8 Hz, 6-H), 7.46 (s; 4-H), 7.79 (d; J = 8 Hz, 7-H) ppm; ¹H-NMR (400 MHz, Aceton-d₆): $\delta = 2.49$ (s; CH₃), 2.95 (s, sehr breit; D₂O-austauschbar; -OH), 6.65 (s breit; 3-H), 7.47 (d; J = 8 Hz, 6-H), 7.70 (d; J = 8 Hz, 7-H) ppm; ¹Grown (d), 11.5), 163 (6.5), 147 (3.2), 136 (26.0), 119 (62.1), 118 (9.1), 91 (100).

Zusammensetzung der CH₂Cl₂-Mutterlauge (5.68 g); 15% 11b und 85% 4b; Zusammensetzung des CH₂Cl₂-Auszug (2.31 g): 60% 4b und 40% 12b.

5-Methyl-3-(5-phthalidyl-methoxy)-phthalid (12b; C₁₈H₁₄O₅, 310.3)

12b wurde aus dem CH₂Cl₂-Auszug von **11b** isoliert. Nach Abtrennung des Vorlaufs (1.234 g) bis 90 °C/0.001 torr, **4b** mit Schmp. 119–120 °C enthaltend, wurde bei 160–180 °C/0.001 torr im Kugelrohr destilliert. Ausb.: 0.782 g (1.4%) **12b**; Schmp.: 214 °C (nach Auskochen mit Benzol); ¹H-NMR (400 MHz): $\delta = 2.51$ (s; CH₃), 4.94 und 5.06 (AB; J = 12.3 Hz, CH₂), 5.32 (s; 3'-H), 6.44 (s; 3-H), 7.40 (s; 4'-H), 7.43 (d; J = 8 Hz, 6'-H), 7.54 (s; 4-H), 7.55 (d; J = 8 Hz, 6-H), 7.80 (d; J = 8 Hz, 7'-H), 7.93 (d; J = 8 Hz, 7-H), ppm; MS (70eV): m/z (%) = 310 [M⁺] (4.7), 292 [M-H₂O] (3.3), 163 [M-C₉H₇O₂] (13.6), 147 [M-C₉H₇O₃] (100), 119 (51.1).

3-Brom-6-methylphthalid (7c; C9H7BrO2, 227.1)

Aus 0.35 mol 4c analog zur Darstellung von 7a. Zusammensetzung des Bromierungsgemisches: 70% 7c, 10% 4c, 8% 9c (und 12% 8c?) Die Reinigung erfolgte durch zweimalige Kristallisation aus *PE*/Benzol und zweimalige Destillation bei ~ 70 °C/0.001 torr im Kugelrohr; Schmp.: 80–85 °C; ¹H-NMR

(400 MHz): $\delta = 2.50$ (s; CH₃), 7.35 (s; 3-H), 7.49 (mc; 2H, 4- und 5-H), 7.69 (s; 7-H) ppm; MS (70eV): m/z (%) = 228 und 226 [M⁺] (4.2 und 4.3), 164 (41.3), 163 (18.1), 147 (100), 119 (93.7), 91 (91.1).

3-Hydroxy-6-methylphthalid (11c; C₉H₈O₃, 164.2)

Sdp.: ~ 80 °C/0.001 torr; Ausb.: 33.68 g (58.7%); Schmp.: 128–130 °C (aus CH₂Cl₂); Ausb.: 28.25 g (49.2%); ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.39$ (s; -CH₃), 7.05 (s sehr breit; 3-H und -OH), 7.53 (d; J = 8 Hz, 5-H), 7.57 (d; J = 8 Hz, 4-H), 7.71 (s; 7-H) ppm; ¹H-NMR (400 MHz, Aceton-d₆): $\delta = 2.46$ (s; CH₃), ~ 3.50 (s sehr breit; -OH), 6.65 (s breit; 3-H), 7.59 (s; 2H, 4-H und 5-H), 7.63 (s; 7-H) ppm; MS (70eV): m/z (%) = 164 [M] (29.8), 163 (14.0), 147 (6.2), 146 (4.4), 136 (57.9), 119 (94.4), 118 (23.8), 91 (100).

Die CH_2Cl_2 -Mutterlauge (5.43 g) enthielt 47% 11c und 54% 4c.

6-Methyl-3-(6-phthalidyl-methoxy)-phthalid(**12c**; C₁₈H₁₄O₅, 310.3)

Der CH₂Cl₂-Auszug (1.19 g) von **11c** wurde zuerst im Kugelrohr bis 110 °C bei 0.001 torr destilliert (Ausb. 0.63 g an **4c**, Schmp.: 87–90 °C), anschließend bei ~ 170 °C/0.001 torr. Ausb. für **12c**: 0.55 g (1%); Schmp.: 197–198 °C (nach Auskochen mit Benzol); ¹H-NMR (400 MHz): $\delta = 2.49$ (s; CH₃), 4.92 und 5.01 (AB; J = 11.9 Hz, CH₂), 5.33 (s; 3'-H), 6.45 (s; 3-H), 7.48 (d; J = 8 Hz, 4'-H), 7.50 (d: J = 8 Hz, 4-H), 7.54 (d; J = 8 Hz, 5'-H), 7.70 (s; 7'-H), 7.71 (d; J = 8 Hz, 5-H), 7.95 (s; 7-H) ppm; MS (70eV): m/z (%) = 310 [M⁺] (71.7), 292 [M-H₂O] (18.6), 264 [M-H₂O-CO] (39.3), 163 [M-C₉H₇O₂] (24.4), 147 [M-C₉H₇O₃] (100), 119 (76.4).

3-Brom-7-methylphthalid (7d; C₉H₇BrO₂, 227.1)

Aus 51.8 g (0.35 mol) **4d**; zweimalige Kristallisation aus *PE*/Benzol, Schmp.: 84–86 °C (Lit. [4]: 65–68 °C); Sdp.: ~70–80 °C/0.001 torr; Schmp.: 87–89 °C; ¹H-NMR (400 MHz): δ = 2.68 (s; CH₃), 7.34 (s; 3-H und d; *J* = 7.4 Hz, 6-H), 7.40 (d; *J* = 7.4 Hz, 4-H), 7.60 (t; *J* = 7.4 Hz, 5-H); MS (70eV): *m/z* (%) = 228 und 226 [M⁺] (1.9 und 2.0), 164 (2.8), 163 (1.7), 147 (100), 119 (54.3), 91 (81.5).

3-Hydroxy-7-methylphthalid (11d; C₉H₈O₃, 164.2)

Sdp.: ~ 80 °C/0.001 torr; Ausb.: 34 g (59.2% auf **4d** bezogen); Schmp.: 115–116 °C (aus CH₂Cl₂; Lit. [3]: 112.5–114 °C); Ausb.: 27.5 g (47.9%); ¹H-NMR (250 MHz, CDCl₃): δ = 2.62 (s; CH₃), 4.71 (d; *J* = 7 Hz, D₂O-austauschbar, -OH), 6.52 (d; *J* = 7 Hz, 3-H), 7.33 (d; *J* = 8 Hz, 6-H), 7.44 (d; *J* = 8 Hz, 4-H), 7.57 (t; *J* = 8 Hz, 5-H) ppm; ¹H-NMR (400 MHz, Aceton-d₆): δ = 2.62 (s; CH₃), 6.62 (s breit; 3-H), 6.89 (s breit; OH), 7.40 (d; *J* = 7.4 Hz, 6-H), 7.47 (d; *J* = 7.4 Hz, 4-H), 7.64 (t; *J* = 7.4 Hz, 5-H) ppm; ¹³C-NMR: δ = 17.29 (q; CH₃), 96.94 (d; C-3), 120.78 (d; C-4), 124.13 (s; C-7), 132.43 (d; C-6), 134.32 (d; C-5), 139.49 (s; C-7), 146.85 (s; C-3'), 169.46 (s; C-1) ppm; MS (70eV): *m/z* (%) = 164 (31.3), 163 (16.5), 147 (16.6), 146 (93.0), 119 (41.8), 118 (100), 91 (47.0).

Zusammensetzung der CH₂Cl₂-Mutterlauge (6.5 g): 47% 11d, 47% 4d und 6% 10d.

7-Methyl-3-(7-phthalidyl-methoxy)-phthalid (12d; $C_{18}H_{14}O_5$, 310.3)

Isoliert aus dem CH₂Cl₂-Auszug (1.93 g) von **11d** nach Abtrennung des Vorlaufs (1.3 g **4d**) bis 90 °C/0.001 Torr; durch Kugelrohrdestillation bei ~ 170 °C/0.001 torr; Ausb.: 0.497 g (0.9%); Schmp.: 201–202 °C (nach Auskochen mit Benzol); ¹H-NMR (400 MHz): δ = 2.68 (s; CH₃), 5.28 und 5.47 (AB; J = 12.5 Hz, CH₂), 5.32 (s; 3'-H), 6.58 (s; 3-H), 7.34 (d; J = 8 Hz, 4'-H), 7.44 (d; J = 8 Hz, 6'-H), 7.45 (d; J = 8 Hz, 6-H), 7.55 (t; J = 8 Hz, 5'-H), 7.59 (d; J = 8 Hz, 4-H), 7.66 (t; J = 8 Hz, 5-H) ppm; MS (70eV): m/z (%) = 310 [M⁺] (4.9), 163 (97.9), 148 (100), 147 (96.1).

7-Formylphthalid (10d; $C_9H_6O_3$, 162.1)

Isoliert aus der CH₂Cl₂-Mutterlauge der Reaktion zu **11d**. Dieses Rohprodukt wurde in Ether aufgenommen und die enthaltene Phthaladehydsäure **11d** mit verd. NaOH extrahiert. Das in der etherischen Phase noch enthaltene Phthalid **4d** wurde durch Kugelrohrdestillation bis 80 °C/0.001 torr entfernt und der Aldehyd **10d** bei ~ 110 °C/0.001 torr isoliert. Schmp.: 135–136 °C (aus Benzol/*PE*); ¹H-NMR (400 MHz): δ = 5.41 (s; 3-H), 7.73 (d; *J* = 8 Hz, 4-H), 7.79 (t; *J* = 8 Hz, 5-H), 8.06 (d; *J* = 8 Hz, 6-H), 11.04 (s; CHO) ppm; ¹³C-NMR: δ = 69.89 (t; C-3), 125.70 (s; C-7), 127.02 (d; C-6), 127.30 (d; C-5), 134.21 (d; C-4), 134.59 (s; C-7), 147.38 (s; C-3'), 169.70 (s; C-1), 188.82 (d; CHO) ppm; MS (70eV): *m/z* (%) = 162 [M⁺] (43.5), 134 [M-CO] (100), 106 (78.9), 105 (79.2), 89 (36.8), 78 (78.6).

3-Methoxy-methylphthalide (13) und 3-Ethoxy-methylphthalide (14; Schema 3)

0.4–0.5 g der entsprechenden Methylphthalaldehydsäuren 11 wurden in 10 ml CH₃OH bzw. C₂H₅OH unter Zusatz von 5 mg *p*-Toluolsulfonsäure 4–5 h unter Rückfluß erhitzt. Nach Entfernen des Lösungsmittels im Vakuum wurde der Rückstand in Ether aufgenommen und noch enthaltene Ausgangssäure 11 mit verd. NaHCO₃-Lösung entfernt. Das Rohprodukt wurde mittels ¹H-NMR-Spektroskopie auf ev. enthaltene offenkettige Phthalaldehydsäureester 15 bzw. 16 untersucht und anschließend durch Kristallisation gereinigt.

3-Methoxy-4-methylphthalid (13a; C₁₀H₁₀O₃, 178.2)

Da nach 4 h Reaktionszeit laut DC noch beträchtliche Mengen an Ausgangsmaterial **11a** vorhanden war, wurde insgesamt 9 h unter Rückfluß erhitzt. Ausb.: 83.7%, enthaltend 1.5% **15a**; Schmp.: 56–57 °C (aus *PE*; Lit. [5]: 61–63.5 °C); Ausb.: 70%; ¹H-NMR (400 MHz): $\delta = 2.43$ (s; 4-CH₃), 3.60 (s; OCH₃), 6.31 (s; 3-H), 7.47 (d; J = 8 Hz, 5-H), 7.49 (t; J = 8 Hz, 6-H), 7.71 (d; J = 8 Hz, 7-H) ppm; ¹³C-NMR: $\delta = 17.04$ (q; CH₃), 56.20 (q; OCH₃), 102.80 (d; C-3), 122.77 (d; C-7), 127.05 (s; C-7'), 130.94 (d; C-6), 134.67 (s; C-4), 135.58 (d; C-5), 142.80 (s; C-3'), 168.88 (s; C-1) ppm (hinsichtlich Zuordnung vergl. SADTLER Research [26] und Lit. [26]); MS (70eV): m/z (%) = 178 [M⁺] (13.0), 177 (11.3), 150 [M-CO] (34.3), 147 [M-CH₃O] (100), 134 (4.6), 119 (61.5), 105 (8.0), 103 (9.0), 91 (60.4); vergl. auch Lit. [25].

3-Ethoxy-4-methylphthalid (14a; C₁₁H₁₂O₃, 192.2)

Ausb.: 91%; keine freier Aldehydethylester **16a**; Schmp.: 57–58 °C (aus *PE*); Ausb.: 70%; ¹H-NMR (400 MHz): $\delta = 1.33$ (t; J = 7 Hz, CH₃), 2.43 (s; 4-CH₃), 3.85 und 3.96 (mc; je 1 H von OCH₂), 6.37 (s; 3-H), 7.46 (d; J = 8 Hz, 5-H), 7.48 (t; J = 8 Hz, 6-H), 7.70 (d; J = 8 Hz, 7-H) ppm; MS (70eV): m/z (%) = 192 [M⁺] (5.7), 164 [M-CO] (23.1), 163 [M-CHO] (10.7), 147 [M-C₂H₅O] (100), 133 (11.3), 119 (46.3), 91 (38.9).

3-Methoxy-5-methylphthalid (13b; $C_{10}H_{10}O_3$, 178.2)

Ausb.: 90.4%, enthaltend 10% **15b**; Schmp.: 80–81 °C (aus *PE*); ¹H-NMR (400 MHz): $\delta = 2.50$ (s; CH₃), 3.62 (s; OCH₃), 6.25 (s; 3-H), 7.37 (s; 4-H), 7.40 (d; J = 8 Hz, 6-H), 7.76 (d; J = 8 Hz, 7-H) ppm; ¹³C-NMR: $\delta = 21.88$ (q; CH₃), 56.58 (q; OCH₃), 102.76 (d; C-3), 123.65 (d; C-4), 124.49 (s; C-7'), 125.08 (d; C-7), 131.80 (d; C-6), 145.12 (s; C-5) 145.71 (s; C-3'), 168.52 (s; C-1) ppm; MS (70eV): m/z (%) = 178 [M⁺] (12.5), 177 (9.8), 150 (19.6), 147 (100), 134 (14.5), 119 (62.6), 105 (15.8), 103 (10.9), 91 (54.7).

Auch ohne Zusatz von p-Toluolsulfonsäure wurde in der gleichen Zeit 68% Umsatz erzielt.

3-Ethoxy-5-methylphthalid (14b; $C_{11}H_{12}O_3$, 192.2)

Ausb.: 99% (mit 5% **16b**); Schmp.: 62–64 °C (aus *PE*); ¹H-NMR (400 MHz): $\delta = 1.33$ (t; J = 7 Hz, -CH₃), 2.50 (s; 5-CH₃), 3.85 und 3.95 (mc; je 1 H von OCH₂), 6.31 (s; 3-H), 7.38 (s; 4-H), 7.39 (d; J = 8 Hz, 6-H),

7.75 (d; J = 8 Hz, 7-H) ppm; MS (70eV): m/z (%) = 192 [M⁺] (5.8), 164 (11.3), 163 (11.4), 147 (100), 133 (18.9), 119 (60.5), 104 (10.5), 91 (45.5).

16b: ¹H-NMR: $\delta = 1.42$ (t; J = 7 Hz, $-CH_3$), 2.45 (s; 4-CH₃), 4.42 (q; J = 7 Hz, $-OCH_2$ -), 7.44 (d; J = 8 Hz, 5-H), 7.73 (s; 3-H), 7.89 (d; J = 8 Hz, 6-H), 10.65 (s; CHO) ppm.

Bei 5 stündigem Erhitzen ohne Säurezusatz wurde 80% iger Umsatz erzielt; Schmp.: 61-62 °C (aus *PE*).

3-Methoxy-6-methylphthalid (13c; $C_{10}H_{10}O_3$, 178.2)

Ausb.: 87.4% (mit 5% **15c**); Schmp.: 79–80 °C (aus *PE*); ¹H-NMR (400 MHz): $\delta = 2.40$ (s; CH₃), 3.53 (s; OCH₃), 6.20 (s; 3-H), 7.37 (d; J = 8 Hz, 4-H), 7.44 (d; J = 8 Hz, 5-H), 7.60 (s; 7-H) ppm; ¹³C-NMR: $\delta = 21.32$ (q; CH₃), 56.48 (q; OCH₃), 103.02 (d; C-3), 123.05 (d; C-4), 125.42 (d; C-7), 127.39 (s; C-7'), 135.39 (d; C-5), 141.33 (s; C-6), 142.08 (s; C-3'), 168.70 (s; C-1) ppm; MS (70eV): m/z (%) = 178 [M⁺] (20.0), 177 (14.9), 150 (28.3), 147 (100), 134 (25.6), 119 (90.1), 105 (13.1). 103 (13.0), 91 (57.7).

3-Ethoxy-6-methylphthalid (14c; $C_{11}H_{12}O_3$, 192.2)

Ausb.: 95.5% (mit 6% **16c**); Schmp.: 86 °C (aus *PE*); ¹H-NMR (400 MHz): $\delta = 1.28$ (t; J = 6.9 Hz, $-CH_3$), 2.44 (s; 6-CH₃), 3.81 und 3.94 (mc; je 1 H von OCH₂), 6.31 (s; 3-H), 7.43 (d; J = 8 Hz, 4-H), 7.48 (d; J = 8 Hz, 5-H), 7.64 (s; 7-H) ppm; MS (70eV): m/z (%) = 192 [M⁺] (9.9), 164 (10.2), 163 (12.7), 147 (100), 133 (29.3), 119 (47.1), 104 (19.2), 91 (37.9).

3-Methoxy-7-methylphthalid (13d; $C_{10}H_{10}O_3$, 178.2)

Ausb.: 90% (mit 2% **15d**); Schmp.: 68–69 °C (aus *PE*); ¹H-NMR (400 MHz): $\delta = 2.66$ (s; 7-CH₃), 3.60 (s; OCH₃), 6.19 (s; 3-H), 7.32 (d; J = 8 Hz, 6-H), 7.35 (d; J = 8 Hz, 4-H), 7.53 (t; J = 8 Hz, 5-H) ppm; ¹³C-NMR: $\delta = 17.27$ (q; CH₃), 56.45 (q; OCH₃), 102.09 (d; C-3), 120.71 (d; C-4), 124.48 (s; C-7'), 132.45, (d; C-6), 134.05 (d; C-5), 139.51 (s; C-7), 145.12 (s; C-3'), 168.74 (s; C-1) ppm; MS (70eV): m/z(%) = 178 [M⁺] (70.1), 177 (32.2), 150 (4.1), 147 (100), 134 (5.7), 119 (86.0), 105 (19.0), 103 (12.1), 91 (86.1); IR 1761 cm⁻¹ (CO).

Nach 14 stündigem Erhitzen ohne Zusatz von p-TsSO₃H fand nur wenig Umsatz zu 13d statt.

3-Ethoxy-7-methylphthalid (14d; C₁₁H₁₂O₃, 192.2)

Ausb.: 95%, weniger als 4% **16d** enthaltend; Schmp.: 65–67 °C (aus *PE*); ¹H-NMR (400 MHz): $\delta = 1.24$ (t; J = 7 Hz, CH₃), 2.60 (s; 7-CH₃), 3.77 und 3.89 (mc; je 1 H von OCH₂), 6.22 (s; 3-H), 7.26 (d; J = 8 Hz, 6-H), 7.30 (d; J = 8 Hz, 4-H), 7.48 (t; J = 8 Hz, 5-H) ppm; MS (70eV): m/z (%) = 192 [M⁺] (17.1), 164 (3.7), 163 (23.3), 147 (100), 133 (11.0), 119 (74.1), 104 (11.2), 91 (58.1).

Umsetzung der Phthalaldehydsäuren 11 mit CH₂N₂

Ca. 0.2 g der Aldehydsäuren **11a** bis **d** wurden mit überschüssiger etherischer Diazomethanlösung unter Beigabe von *ca*. 1 ml CH₃OH versetzt. Nach vollständiger Lösung der Hydroxyphthalide wurde noch so viel CH₂N₂ zugesetzt, daß die Lösung gelblich gefärbt war. Nach 14-stündiger Verweilzeit im Kühlschrank wurde das Lösungsmittel entfernt und der Rückstand durch Kugelrohrdestillation (Sdp. ~75 °C/0.3 torr) gereinigt. Die Prüfung auf Reinheit erfolgte durch Schichtchromatographie.

2-Formyl-6-methylbenzoesäuremethylester (15d; $C_{10}H_{10}O_3$, 178.2)

Einziges Produkt bei Abbruch der Reaktion nach 5 h; Öl; $n_D^{24} = 1.5329$; ¹H-NMR (400 MHz): $\delta = 2.35$ (s; CH₃), 3.95 (s; OCH₃), 7.46 (mc; 2 H, 4-H, 5-H), 7.67 (mc; 3-H), 9.96 (s; CHO) ppm; ¹³C-NMR:

$$\begin{split} &\delta = 18.80\,(\text{q; CH}_3); 52.57\,(\text{q; OCH}_3), 121.81\,(\text{s; C-1}), 128.97\,(\text{d; C-3}), 129.67\,(\text{d; C-5}), 133.44\,(\text{s; C-2}), 135.90\,(\text{d; C-4}), 136.18\,(\text{s; C-6}), 169.02\,(\text{s; CO}_2), 190.65\,(\text{d; CHO})\,\text{ppm; MS}\,(70\text{eV}): m/z\,(\%) = 178\,[\text{M}]\,(18.5), 163\,[\text{M-CH}_3]\,(36.4), 150\,[\text{M-CO}]\,(63.3), 147\,[\text{M-CH}_3\text{O}]\,(89.2), 119\,[\text{M-CH}_3\text{O-CO}]\,(89.8), 118\,[\text{M-CH}_3\text{OH-CO}]\,(100), 105\,(12.1), 91\,(88.0). \end{split}$$

6-Methyl-2-oxiranyl-benzoesäuremethylester (17d; C₁₁H₁₂O₃, 192.2)

Zu 20% im Reaktionsgemisch nach 14-stündigem Einwirken von Diazomethan auf **11d** neben 80% **15d** enthalten; $R_f = 0.45$ für beide Substanzen auf Kieselgel (Laufmittel: Benzol/EtOH = 40/1); Zuordnung der Signale durch Spektrenvergleich. ¹H-NMR (400 MHz): $\delta = 2.33$ (s; CH₃), 2.66 (ABX; J = 5.4/2.5 Hz, 1 H von CH₂), 3.08 (ABX; J = 5.4/3.9 Hz, 1 H von CH₂), 3.91 (s; OCH₃), ~ 3.94 (dd; J = ?, CH), 7.12 (d; J = 7.9 Hz, 5-H), 7.13 (d; J = 7.9 Hz, 3-H), 7.28 (t; J = 7.9 Hz, 4-H) ppm.

6-Methyl-2-(2-oxopropyl)-benzoesäuremethylester (18d; C₁₂H₁₄O₃, 206.2)

Isoliert als Öl aus der hinteren Fraktion (anteilig zu 26%) durch Schichtchromatographie auf Kieselgel (Mehrfachentwicklung; $R_{\rm f} = 0.19$ in Benzol/C₂H₅OH = 50/1) nach 6-stündigem Einwirken von konzentrierter CH₂N₂-Lösung auf **11d**. ¹H-NMR (400 MHz): $\delta = 2.11$ (s; COCH₃), 2.34 (s; 6-CH₃), 3.71 (s; ArCH₂), 3.84 (s; OCH₃), 7.01 (d; J = 7.4 Hz, 5-H), 7.12 (d; J = 7.4 Hz, 3-H), 7.25 (t; J = 7.9 Hz, 4-H) ppm; ¹³C-NMR: $\delta = 20.32$ (q; CH₃), 29.28 (q; COCH₃), 49.04 (t; ArCH₂), 51.82 (q; OCH₃), 128.41 (d; C-5), 129.49 (d; C-3); 129.95 (d; C-4), 132.60 (s; C-1), 133.23 (s; C-2), 136.43 (s; C-6), 169.62 (s; COOCH₃), 205.61 (s; COCH₃) ppm (Zuordnung durch Spektrenabschätzung); MS (70eV): m/z (%) = 206 [M] (3.0), 177 [M-CHO] (11.3), 175 [M-OCH₃] (26.0), 174 [M-CH₃OH] (72.9), 164 [M-C₂H₂O] (19.0), 163 [M-CH₃CO] (11.3), 147 [M-C₂H₃O₂] (18.6), 133 (36.5), 132 [M-OCH₃-COCH₃] (100), 105 [C₇H₅O] (23.0); IR: 1725 cm⁻¹ (CO).

3-Methoxy-4-methylphthalid (13a)

Einziges Produkt nach 14-stündiger Reaktion von **11a** mit CH_2N_2 ; ¹H-NMR-Spektrum und Massenspektrum entsprechen.

2-Formyl-5-methyl-benzoesäuremethylester (15c; $C_{10}H_{10}O_3$, 178.2) und 5-Methyl-2-oxiranyl-benzoesäuremethylester (17c; $C_{11}H_{12}O_3$, 192.2)

Isoliert nach 15 stündiger Reaktion von **11c** mit CH_2N_2 als Gemisch (71% Ausb.) durch präparative Schichtchromatographie an Kieselgel (Laufmittel: Benzol/C₂H₅OH = 50/1; R_f = 0.54). Zusammensetzung: 72% **15c** und 28% **17c** laut ¹H-NMR-Spektrum. **15c**: ¹H-NMR (400 MHz): δ = 2.40 (s; CH₃), 3.92 (s; OCH₃), 7.39 (d; J = 7.9 Hz, 4-H), 7.70 (s; 6-H), 7.80 (d; J = 7.9 Hz, 3-H), 10.50 (s; CHO) ppm.

17c: wurde ohne Beimengung von 15c nach Einwirken von konzentrierter CH₂N₂-Lösung (6 h) auf 11c durch Schichtchromatographie isoliert. Ausb.: 17%; Öl; ¹H-NMR (400 MHz): δ = 2.35 (s; CH₃), 2.56 (ABX; *J* = 5.9/2.5 Hz, 1 H von CH₂), 3.17 (ABX; *J* = 5.9/4.4 Hz, 1 H von CH₂), 3.89 (s; OCH₃), 4.52 (dd; *J* = 4.4/2.5 Hz, CH), 7.30 (d; *J* = 7.9 Hz, 4-H), 7.34 (d; *J* = 7.9 Hz, 3-H), 7.78 (s; 6-H) ppm; ¹³C-NMR: δ = 20.93 (q; CH₃), 51.00 (t; CH₂), 51.40 (d; CH), 52.03 (q; OCH₃), 121.87 (s; C-1), 125.22 (d; C-3), 130.96 (d; C-6), 133.60 (d; C-4), 137.28 (s; C-2), 137.44 (s; C-5) ppm; MS (70eV): *m/z* (%) = 192 [M] (2.9), 177 [M-CH₃] (3.3), 162 [M-CH₂O] (44.9), 160 [M-CH₃OH] (18.1), 147 [M-CH₃-CH₂OH] (100), 133 [M-C₂H₃O₂] (16.7), 132 (9.4) 119 (27.9), 105 (19.6), 91 (24.4).

5-Methyl-2-(2-oxopropyl)-benzoesäuremethylester (18c; $C_{12}H_{14}O_3$, 206.2)

Erhalten aus der hinteren Fraktion ($R_f = 0.38$) bei der Isolierung von 17c durch Mehrfachentwicklung des Chromatogramms als Öl; ¹H-NMR (400 MHz): $\delta = 2.22$ (s; COCH₃), 2.35 (s; 5-CH₃), 3.82 (s;

OCH₃), 4.02 (s; ArCH₂), 7.05 (d; J = 7.9 Hz, 3-H), 7.27 (d; J = 7.9 Hz, 4-H), 7.82 (s; 6-H) ppm (Zuordnung durch NOE); ¹³C-NMR: $\delta = 20.89$ (q; CH₃), 29.73 (q; COCH₃), 49.27 (t; ArCH₂), 51.85 (q; OCH₃), 128.89 (s; C-1), 131.58 (d; C-4), 132.34 (d; C-3), 133.19 (d; C-6), 133.80 (s; C-2), 137.00 (s; C-5), 167.49 (s; COOCH₃), 206.00 (s; COCH₃) ppm; MS (70eV): m/z (%) = 206 [M] (15.2), 177 (7.2), 175 (22.0), 174 (78.4), 164 (27.5), 163 (20.7), 147 (15.3), 133 (52.3), 132 (100), 105 (33.5); IR: 1721 cm⁻¹ (CO).

2-Formyl-4-methyl-benzoesäuremethylester (**15b**; $C_{10}H_{10}O_3$, 178.2) und 4-Methyl-2-oxiranylbenzoesäuremethylester (**17b**; $C_{11}H_{12}O_3$, 192.2)

11b reagiert am langsamsten mit CH_2N_2 . Ausb. der vorderen Fraktion nach Schichtchromatographie an Kieselgel ($R_f = 0.57$, Laufmittel: Benzol/ $C_2H_5OH = 50/1$) 74%, Zusammensetzung des Gemisches laut ¹H-NMR: 72% **15b** und 28% **17b**.

15b: ¹H-NMR (400 MHz): $\delta = 2.42$ (s; CH₃), 3.92 (s; OCH₃), 7.40 (d; J = 7.9 Hz, 5-H), 7.70 (s; 3-H), 7.85 (d; J = 7.9 Hz, 6-H), 10.61 (s; CHO) ppm.

17b: Als einziges Produkt in der vorderen Fraktion der Schichtchromatographie bei 6-stündigem Einwirken von konzentrierterer CH₂N₂-Lösung auf **11b**. Ausb.: 40%; Öl; ¹H-NMR (400 MHz): $\delta = 2.34$ (s; CH₃), 2.56 (ABX; J = 5.9/2.46 Hz, 1 H von CH₂), 3.17 (ABX; J = 5.9/4.43 Hz, 1 H von CH₂), 3.86 (s; OCH₃), 4.55 (dd; J = 4.43/2.46 Hz, CH), 7.11 (d; J = 7.9 Hz, 5-H), 7.26 (s; 3-H), 7.86 (d; J = 7.9 Hz, 6-H) ppm; ¹³C-NMR: $\delta = 21.52$ (q; CH₃), 50.89 (t; CH₂O), 51.41 (d; CH), 51.82 (q; OCH₃), 125.68 (d; C-3), 125.71 (s; C-1), 128.04 (d; C-5), 130.58 (d; C-6), 140.36 (s; C-2), 143.61 (s; C-4), 167.04 (s; CO) ppm; MS (70eV): m/z (%) = 192 [M] (0.5), 177 (7.6), 162 (56.7), 160 (68.4), 147 (100), 133 (25.3), 132 (10.8), 119 (27.4), 105 (23.7), 91 (30.1).

Die hintere Fraktion (anteilig zu 26%; $R_f = 0.33$) bestand aus einem Gemisch von zwei Substanzen mit Molekularpeaks bei 206 (14.6) und 192 (4.0).

4-Methyl-2-(2-oxopropyl)-benzoesäuremethylester (18b; C₁₂H₁₄O₃, 206.2)

Isoliert durch Mehrfachentwicklung der hinteren Fraktion von **17b** als Öl. ¹H-NMR (400 MHz): $\delta = 2.25$ (s; COCH₃), 2.35 (s; 4-CH₃), 3.81 (s; OCH₃), 4.03 (s; ArCH₂), 6.97 (s; 3-H), 7.13 (d; J = 7.9 Hz, 5-H), 7.92 (d; J = 7.9 Hz, 6-H) ppm; MS (70eV): m/z (%) = 206 [M] (11.8), 177 (9.9), 175 (21.0), 174 (67.4), 164 (37.6), 163 (13.5), 147 (15.7), 133 (85.2), 132 (100), 105 (28.6).

2-Formylbenzoesäuremethylester (15e; C9H8O3, 164.2)

Aus Phthalaldehydsäure (**11e**) nach 5-minütiger Reaktion mit CH_2N_2 -Lösung als Öl. ¹H-NMR (400 MHz): $\delta = 3.95$ (s; OCH₃), 7.62 (mc; 2 H, 4- und 5-H), 7.91 und 7.93 (jeweils mc; 3- und 6-H), 10.60 (s; CHO) ppm; MS (70eV): m/z (%) = 164 [M] (8.9), 163 [M-H] (8.3), 149 [M-CH₃] (46.2), 136 [M-CO] (82.2), 135 [M-CHO] (46.6), 133 [M-CH₃O] (87.1), 132 [M-CH₃OH] (19.1), 105 [M-C₂H₃O₂] (100), 104 [M-CH₃OH-CO] (71.4), 92 (61.4).

2-Oxiranyl-benzoesäuremethylester (17e; $C_{10}H_{10}O_3$, 178.2)

Isoliert durch Schichtchromatographie ($R_f = 0.39$ in Benzol/EtOH = 50/1) nach 10-stündiger Reaktion von **11e** mit CH₂N₂ als Öl (Ausb.: 34%). ¹H-NMR: (400 MHz): $\delta = 2.57$ (ABX; J = 5.9/2.96 Hz, 1 H von CH₂), 3.19 (ABX; J = 5.9/4.43 Hz, 1 H von CH₂), 3.89 (s; OCH₃), 4.56 (dd; J = 4.43/2.96 Hz, CH), 7.32 (t; J = 7.9 Hz, 5-H), 7.45 (d; J = 7.9 Hz, 3-H), 7.49 (t; J = 7.9 Hz, 4-H), 7.96 (d; J = 7.9 Hz, 6-H) ppm; ¹³C-NMR: $\delta = 50.95$ (t; CH₂O), 51.39 (d; CH), 52.02 (q; OCH₃), 125.15 (d; C-3), 127.37 (d; C-5), 128.58 (s; C-1), 130.38 (d; C-6), 132.83 (d; C-4), 140.39 (s; C-2), 167.07 (s; CO) ppm; MS (70eV): m/z (%) = 163 [M-CH₃] (2.9), 148 [M-CH₂O] (55.3), 146 [M-CH₃OH] (48.8), 133 [M-CH₃-CH₂O] (100), 119 (24.8), 105 (27.7), 91 (39.6).

2-(2-Oxopropyl)-benzoesäuremethylester (18e; C₁₁H₁₂O₃, 192.2)

Als Öl erhalten bei Mehrfachentwicklung der hinteren Fraktion ($R_f = 0.17$) von **17e**. ¹H-NMR (400 MHz): $\delta = 2.24$ (s; COCH₃), 3.83 (s; OCH₃), 4.07 (s; ArCH₂), 7.17 (d; J = 7.9 Hz, 3-H), 7.33 (t; J = 7.9 Hz, 5-H), 7.46 (t; J = 7.9 Hz, 4-H), 8.01 (d; J = 7.9 Hz, 6-H) ppm; ¹³C-NMR: $\delta = 29.82$ (q; COCH₃), 49.65 (t; ArCH₂), 51.93 (q; OCH₃), 127.25 (d; C-5), 129.18 (s; C-1), 131.03 (d; C-4), 132.45(d; C-6), 132.47 (d; C-3), 136.84 (s; C-2), 167.39 (s; COOCH₃), 205.67 (s; COCH₃) ppm; MS (70eV): m/z (%) = 192 [M] (7.1), 161 [M-OCH₃] (19.9), 160 [M-CH₃OH] (73.3), 150 (M-C₂H₂O] (41.2), 133 [M-C₂H₃O₂] (16.1), 119 (62.0), 118 [M-OCH₃-COCH₃] (100), 91 (41.3).

Dank

Für die Aufnahme der NMR-Spektren danke ich Frau S. Felsinger, für die Aufnahme der Massenspektren den Herren J. Plangger und P. Unteregger. Besonder Dank für das Layout gilt Frau U. Haslinger.

Literatur

- [1] 20. Mitt., Neudeck HK (1995) Monatsh Chem (submitted)
- [2] Neudeck HK (Mitt in Vorbereitung)
- [3] Newman MS, Leegwater AL (1968) J Am Chem Soc 90: 4410
- [4] Meyer A, Neudeck H, Schlögl K (1977) Chem Ber 110: 1403
- [5] Francis JE, Doebel KJ, Schutte PM, Savarese EC, Hopkins SE, Bachmann EF (1979) Can J Chem 57: 3326
- [6] Nakazaki M, Hirose Y, Shimizu T, Suzuki T, Ishii A, Makimura M (1980) J Org Chem 45: 1428
- [7] Bunnett JF, Hauser ChF (1965) J Am Chem Soc 87: 2214
- [8] Bertrand MP, Oumar-Mahamat H, Surzur JM (1985) Tetrahedron Lett 26: 1209
- [9] Maklouf MA, Rickborn B (1981) J Org Chem 46: 4810
- [10] Mc Alees AJ, Mc Crindle R, Sneddon DW (1977) J Chem Soc Perkin Trans 1: 2030
- [11] Mori M, Chiba K, Inotsume N, Ban Y (1979) Heterocycles 12: 921
- [12] Cowell A, Stille JK (1980) J Am Chem Soc 102: 4193
- [13] Foa M, Frangalane F, Bencini E, Gardano A (1985) J Organometallic Chem: 293
- [14] Uemara M, Tokuyama S, Sakan T (1975) Chem Lett: 1195
- [15] Meyer N, Seebach D (1978) Angew Chem 90: 553
- [16] Larock RC, Fellows CA (1982) J Am Chem Soc 104: 1900
- [17] Sibi MP, Miah MAJ, Snieckus V (1984) J Org Chem 49: 737
- [18] Commins DL, Brown JS (1986) J Org Chem 51: 3566
- [19] Mazzocchi PH, Jing NY, Oda K (1992) Heterocycles 34: 1483
- [20] Padwa A, Bullock WH, Norman BH, Perumattam J (1991) J Org Chem 56: 4252
- [21] Noguchi M, Kakimoto S, Kawakami H, Kajigaeshi S (1985) Heterocycles 23: 1085
- [22] Perkin WH, Stone JFS (1925) J Chem Soc 127: 2275
- [23] Vögtle F, Grütze J, Nätscher R, Wieder W, Weber E, Grün R (1975) Chem Ber 108: 1694
- [24] Achenbach H, Mühlenfeld A (1985) Z Naturforsch 406: 426
- [25] Weeks DP, Field FH (1986) J Org Chem 51: 3566
- [26] C-13 NMR-Database, Sadtler Research Lab, Philadelphia, PA

Received August 22, 1995. Accepted (revised) September 25, 1995